PHYS 705: Classical Mechanics




Housekeeping

- Today is our last lecture

Thank you for a good semester!

- Final Exam next week on Dec. 6



Additional Problem (HW 10)

Choose origin to be at bottom of bowl

T=%m(5c2+j/2+z'2) V=mg(x2+y2—xy)

Lzém()&z+j/2+z'2)—mg(x2+y2—xy)

Equilibrium @ (x,,,,z,)=(0,0,0), (X, y,Z) = (77x,77y,772) ~ (0, 0,0)



Additional Problem (HW 10)

Since z=/h(x,y)=x"+y"—xy,wehave z=(2x—y)x+(2y—x)y
and 2 =(2x—y) i +(2y—x) 3* +2(2x—y)(2y - x) i
Near (xo , yo) = (0, O) , keeping only up to quadratic terms, we have:

T=%m(5c2+j/2) V=mg(x2+y2—xy)



Additional Problem (HW 10)




Additional Problem (HW 10)

The Characteristic equation for the eigenvalues is:

det(V—c<)2T):m[(2g—a)2)2 —gz}zo
(2g—a)2—g)(2g—a)2+g)=0
(g-0")(3g-0")=0



Additional Problem (HW 10)

Va
1 /lj
a =———
a)+:\/§ ) : \/27’11 \_1
Wlth >
a)_:\/g . - 1 flj X
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HW #10 Prob6.12

- a is the unstretched equilibrium length of the springs.

NOTE: if the total length of the system d is not = 3aq,

- Then, the equilibrium positions for the masses are NOT necessarily at

X, =0a Xy = 24



HW #10 Prob6.12

X

Using the left fixed end as a reference point, X; gives the instantaneous

positions of 7.

T:%('fﬂ'czz) U =



HW #1(0 Prob6.12

The equilibrium positions X,, and x,, are given by,

. 3d -2
6—U=k(xl—a)—3k(x2—x1—a)20 X = =
Ox, I 7
oU l _4d +2a
AND —=3k(x2—x1—a)—k(d—x2—a):o_ Xoo = 7

ox,



HW #10 Prob6.12

a a a

VAN H
N b
)

X

The deviations (771 17, ) are defined wrt to these two eq values: x,, x,,

j =X; =%

T, iseasy to calculate since n, =X,

0
T:%(-lwrxzz) = T:%(ﬁfﬂﬁ) = ]—;j:(lz)/l mj



HW #10 Prob6.12

a a a '

For U, , since U is a quadratic function, one can expand U out and

pick out all the quadratic terms

k 3k k
U :E(x1 —a)2 +7(x2 — X, —a)2 +5(d—x2 —a)2

k 3k k
U :5(771 + X _a)z +7(772 T X0 =T — Xy _a)2 +E(d_772 — Xy _a)2



HW #10 Prob6.12

k 3k
v :5(771 T X —a) +7(772 T Xoo — TN — X0 —a)2 +

E(d_ﬂz — Xy —a)2

Near the equilibrium values 77, = ( and substitute values for X, X,

U, 1s then picked out simply as the quadratic terms:

3d —2a 4d +2a
KXo = - =d Xyo = 7 =2a

(m//) (772%/ n=a=a) +§(%—f72;2a—/a)2




HW #10 Prob6.12

a a a
k

X Xy
S 4 X
k » 3k » k 2
UZE(U1+X10_G) +7(772+x20_771_x10_a) +5(511_772_3%0_‘1)
k 3k k
Ul,, =5+ = (= 2mam, )+ s
- U - 4k -3k
T\ 3k 4k



HW #10 Probé6.12

a a a

Alternative, the quadratic form U ; is the approximation of U about X,,, X,

U

' Ox0x,
X

0



HW #10 Prob6.12

a a a '

X

Xl X2
N N
“ 1

The simplest way to get U, is to directly evaluate these double derivatives:

l

p ~\ U, =k+3k =4k
Z%zk(xl—a)—%(xz—xl—a)zo - UII_U . - - Ty’
a—U=3k(x2—x1—a)—k(a’—xz—a)=0 S a —3k 4k
% J U,, =4k

taking derivative - o°U
one more time ’ oxox




x, =1sin @, x, =Ilsm@ —Isinb,

y, =lcos 8, vy, =1lcosf +1cosb,

X =lcos66 x,=1cosB6, —1cosb,0,

y, =—Isin6@ 7y, =-1sin6,6,—1sin 6,0,

m, T:%(xf+y'f)+%(x§+y'§)

:%129124_%(120’12_'_129‘22_212 COS((91+92)9192)



x, =1sin @, x,=Ismn6 —I/sinb,
y, =lcos B, ¥, =1lcosO +1cos0,

HW #10

U=m1g(l—yl)+m2g(2l—yl—yz) e 0@6 =8 =0
=m,gl(1—cos6,)+m,gl(2—cos6, —cosb, ) S0@h =0

[T -1 = %1295 +%(129'3 +1202 =21 cos(6,+6,)6,6,)

—m,gl (1—cos6,)—m,gl(2—cos 6, —cos b, )

Letting 77, =6, — 6, near the equilibrium at 6, = §,, =0, we have:

2 2
n,=60,=0 l—cosﬁjzﬁj/2=77j/2



HW #10

Note: To the lowest order in 77;, we also have:
cos (6, +6,)06, =| 1+ 0(n* ) |, =i,
Thus, approximating T around the equilibrium, we have,
T = %1293 + %(1295 +1202 =21% cos(6,+6,) 6,6, )

!

1 o1 : .
TZEF (rmy +m, )3y +512m27722—12m2771772

1,,.. 1
Lz_%ﬂiﬂj—— ij77i77j 1

2 2
m, +m —m
7=z 2 2
! ( —m, m,



HW #10

For 0, =7, =0 ,recall we have [ —cos 8, = 6?].2/2 = 77]2./2
Thus, approximating U around equilibrium, we have,

U =mgl(1-cos)+m,gl(l—cos6, +1—-cosb,)

\

1
U = 5[(7111 +m, ) gln; +m2g17722]
1 .. 1
L 2_7;-]-77,-77]- __Uz'j77i77j 1

2 2
m+m, O
U, =gl 0

m,



—

HW #10

Resonant frequencies (eigen-frequencies) are given by the solution of

the characteristic equation:

[-1°2 1>
det(UU—l]:]):O ‘ det[(g )(m1‘|‘m2) m, ]:O
m,

1*Am, (g71-1°4)

{

(gl—lz/l)2 (m, +m,)m, —(12m22 )2 =0

!
(gt -2 =rma || (gh-PA)N +P'mia]=0

with v = \/(ml +m2)m2



HW #10
(g2 +rma || (g1 -PAN -rPmia]=0

This equation has two solutions:

(gl -1PA N =~1*miA, (g1-1P2. )N =Im}A.
! L ]
. _8 \/mz(m1+m2) . .8 \/mz(ml+m2)

+

! \/mz(m1+m2)—m2 ! \/mz(ml+m2)+m2

The resonant frequencies are given by @ = \/I .

o prs




W 10 e

Defining the following,

— 5/

M =m +m,>m, e=m,/M <1 (m, < m,)

We can write:

(my (rm +m, ))1/2 - (Mz &)m = Me

M

note: this is
still exact.
So, the resonant frequencies can be written as:
1/2

/
F@(M%fmzj :\/% Mi{/_ﬁa) :\/%(1471\/2]

) (o, = %[li%j ) o, =[S, 50

(m, < m,)




HW #10

Now, the associated eigenvectors can be calculated from,
(U—a)izT)-ai =0

w, = %[Hﬁ] ) oV =—Jead?

o= ?(I‘TJ — =z

Normalization wrtto a,-T-a, =1 gives:

1

a =N, [_\/;] and a =N_ [\/E] N, = [le(gz 4 32 +1)]‘1/2




—_—

HW #10

Recall that the generalized coordinates and the normal modes ( are

related by:
C o O B
N=A-C where {= [Cfeiw t] A= (a(;) a(_z) = \/]\%N+ \/];\]N
_€e a, a + -
Only é/ .1s active (anti-symmetric) Onlyé/ _ is active (symmetric)
T ~ _Jg§+ n ~ +\/;é,_
—> —>

772Né/+ 772N§_

< —>



HW #10

We just saw that the general solution can be written as a linear

combination of the normal modes: —
; [1 : g )
V [

W, = —

ﬁ(t):Re_CJZg) ‘ot 1 C aVe "‘”} * )

ﬁz(t):Re'CJraJ(rz) zm_l_Ca(z) za)t:| a, :N+[_1€J

The constants C,_ and C_ will be determined by initial conditions.

I
-

With the prescribed pluck: 7, (0) =1, 17, (O) =0,and 77, (O) =17, (O)

m(t)= 7720 (cos(m,r)+cos(w.1))

i, (t)= (cos(@,1)—cos(w.t))

zf




e

HW #10

Using the following trig identities:

_ o, two
cos(w,t)+cos(w,t)=2cos(dt)cos(dwt) =T
—cos(@,t)+cos(w,t)=2sin(ot)sin(dw ¢) S = L~ O
2
Then, we can rewrite our solution in the following “beat” form:
7 (1) = 1, cos(@t)cos(sw1) 7, (1)= ism(m)sm(am /)

Mﬁm




Review: Euler’s Equations

o — (I ,— 1, ) ,0, = N, (NOTE: all three equations have
Lo, —(I,-1)o,0 =N, the same cyclic symmetry wrt
Lo, —(I1 —]z)a)la)z =N, the indices)

- EOM describing the rigid body motion in the body axes
- all quantities must be expressed in the body coordinates
- Body axes are chosen to align with the Principal Axes
-so that the Moments of Inertia Tensor is diagonalized and I’s are the

Principal Moments of Inertia



—_—

1st Example: Torque Free Motion of a Symmetric Top

A symmetric top means that: /, =1, # [,

If [, =1, > I, : the object will be a long cigar-like objects such as a juggling pin.

If [, =1, <, :the object will be a stubby objects such as a squashed pumpkin.

Euler equations are simplified in the torque free case:
Lo =(1,-1,) w,0,
Lo, =(I,-1,) o,

Lao,=(1,-1,) o0, =0



Torque Free Motion of a Symmetric Top

Nontrivial case ( ®is NOT along one of the principal axes):

o, = -Qo, I

w, =Qo, Q= 3] L |, = const
1

w, = const

With ()* >0, we have the solution: /‘[A, @, will be determined by ICS]

o, ()= Acos(Qt +¢,) and o, (1)=Asin(Qt+@,)




Torque Free Motion of a Symmetric Top

Geometric visualization:

In the “body” frame:

X3

® rotates around x, with frequency

I, -1
_____ /s \ Q=[ : I)a%zconst
-7 DT [1

S o ~o | _7
~
———————— - -I——— ‘

(This is called the “body” cone)




Torque Free Motion of a Symmetric Top

Geometric visualization:

In the “fixed” frame:

x3'x

® also rotates around x, 'with frequency

I,—1
Q=[3 1)w3:const
]1

(This is called the “space” cone)



Torque Free Motion of a Symmetric Top

Observations (in the fixed axes) cont:

This means that all three vectors ®, L, X, always lie on a plane.

OxXX; o
X, . L- (0) X X, ) =(0 (for a symmetric
top)

Summary:

- @ precesses around the “body” cone

- @ also precesses around the “space” cone

- All three vectors @, L, X, always lie on a plane

- L is chosen to align with X, ' in the space axes



Torque Free Motion of a Symmetric Top

This can be visualized as the body cone rolling either inside or outside of

the space cone !

Precession Rate

4374
. Q - [ a)3
; |
Body cone
Prolate, I;> 1, Oblate, L1
£2. ®; have opposite signs. £}, 0, have same sign.

(a) (k)

Case1: [, > 1, Case 2: [, <1,



Torque Free Motion of a Symmetric Top

Mathematica Animation:

http://demonstrations.wolfram.com/FreePrecessionOfARotatingRigidBo

dy/




Stability of General Torque Free Motion

Consider torque-free motion for a rigid body with 7, > 1, > I,

Again, we have chosen the body axes to align with the principal axes.

As an example, we will consider rotation near the x, axis (similar analysis

can be done near the other two principal axes).

- this means that we have,
o =X, +A(1)X,+u(1)X,

where 4 (t) 7, (t) are small time-dependent perturbation to the motion

For stability analysis, we wish to analyze the time evolution of these

two quantities to see if they remain small or will they blow up.




Stability of General Torque Free Motion

The solution for the perturbations is oscillatory, i.e.,
A(t)=Ae™ + Be™

and Y7 (l‘ ) —A'e™ + B'e™ where A, B, A’, & B’ depends on ICs

Qz _ ([1 _]3)([1 _12)0)12 >0

1,1

=) Thus, both of the small perturbations are oscillatory and the

rotation about the x, axis is stable !



Stability of General Torque Free Motion

With a similar calculation for rotation near the X, , one can show again
that small perturbations are oscillatory and motion about the Xx; axis is
stable.

However, a similar analysis will show that the oscillatory motion for the
perturbations will become exponential if we consider rotation near the x,

axis. (HW assignment)

=) Summary:

Without any applied torque, motion around the principle axes
with the largest and the smallest principal moments are stable

while motion around the intermediate axis is unstable.



Symmetric Top in an Uniform Gravity Field

We have been looking at motion of torque-free rigid bodies.

Now, we consider a rigid body under the influence of gravity so that U # 0

X3

9/‘—{

Xg,

Assumptions:

| - One point of the body remains fixed at the
origin O but it not necessary coincides with
the CM

- Again, we assume a symmetric top, i.e.,

™
R4
Y
b

ek N x]_
N

I, =1, #1,

51
Line of nodes



Symmetric Top in an Uniform Gravity Field

To analyze the motion in the body frame, we can use the Euler’s egs:

Lo —(I,-1,)o,0,= N,
I, o, _([3 _]1)603(01 =N,
Lao,=N, < |I,=1,
The Euler’s equations provide a description for the

time evolution of (a)1 , 0, , (O, ) in the “body” axes

dsiny sin @+ 6 cosy
And, using o =| ¢cosy sin@—0Osiny |, we can link the

¢COS@+W

L0
Line of nodes

description back to the Euler’s angles.



Symmetric Top in an Uniform Gravity Field

Alternatively, we can use the Lagrangian method to directly obtain EOM

for (¢,9,l//)

L :T—U=%(¢52 sin” 6’+¢9'2)+[—23(¢ﬂcos<9+1/))2 — Mgl cos 6

Both @, are cyclic!

We immediately have the following two constants

of motion:
oL : .
5:13 (¢cos&’+w) =p,
oL

- :(11 sin® @ + I, cos” 6’)¢5+I3 cosOy =p,

H‘f
*1

b
Line of nodes



—_—

Symmetric Top in an Uniform Gravity Field

Rescaling the two constants: Py = / 1b Py, = / 14

We can write ...

j = s =—La—cosd
A 2 sin” 0

b—acosf 1 (b—acos@j

Then, substituting ¢(6’) and v (6’ ) into the conservation of total energy

equation,

E:T+U=%(¢52 sin29+92)+1—23(¢5c056?+gﬂ)2 + Mgl cos b

Rewriting, we then have the desired ODE for 6...



Symmetric Top in an Uniform Gravity Field

%92 =E'-V,(0)

2
(0)= 1, (b—acost) + Mgl cos 6

V —
2 sin” @

eff

-The direct method is to integrate this to get & (t) Then, substitute it back
into the ODEs for ¢5, i and integrate to get ¢@ (t) N7/ (t) :



Symmetric Top in an Uniform Gravity Field

- 3'd Fuler angle: ¥ = spin about the body’s symmetry axis

- 1st Euler angle: ¢ = precession of the body’s symmetry axis -

(have seen in
torque free case)

about the space x, ' (Z)axis il
- ond Euler angle: @ = nutation (bobbing up & down) of the body

symmetry axis (this is new)



Symmetric Top in an Uniform Gravity Field

We can analyze the nutation by treating the 0 (t) equation as an effective

potential problem,

%92 =E'-V,(0)

I, (b—acos (9)2

Veﬂ (6) - 2 sin” @

+ Mgl cosb



Precession and Nutation for a Symmetric Top

Overview:

off (‘9 ) 1. There is a minimum value of
E':Eo':Veﬁf(go)

for which there is only ONE allowed

value for @ = 0, (pure precession).

2. For larger valuesof £'> E,' such as
E! — E1 !
@ is bounded between 2 values:

6 <0<0,

This is the case of nutation. We will look at

these two situations closer next.



Precession for a Symmetric Top

Two subcases:

Case 1a: 6, < /2 The tip of the top is above the

horizontal plane ( x, ' =0 in the fixed frame ).

For a solution of steady precession at a fixed tilt 6, < z/2

2
w, > ]—\/IlMgl cost, =w*
3
So, @, must be fast enough, i.e., @, > @ *(fast top)

-

Mgl

Slow precession
SR B SO)
P = Lo
et Fast precession
| 1, cos b,

(note: the fast precession is independent of gravity g)



Precession for a Symmetric Top
Case 1b: §, > /2 The tip of the top is below the

horizontal plane ( x, ' =0 in the fixed frame ). Top is

supported by a point support (show).

==) No special condition on @, -

With top started with initial condition &, > 7z/2 , it will remain

below the horizontal plane and precesses around the fixed axis x; '.



Nutation for a Symmetric Top

Case 2: ) <0 <0, General situation with £'> E '=V 7 (6,) - The body axis x,

will blob up and down as it precesses around the fixed axis x, ' (nutation).

b—acosf
sin” @

So, depending on a and b, ¢ might or might not change sign... and we have the

The precession rate of the body axis X, is described by: ¢ =

following three cases: (a and b are proportional to the 2 consts of motion: P, P,)

B Paths trace by the body
axis x, as it precesses
around the fixed axis x, '
(vertical).

b<a b=acosb,
(reversal possible) @ ( o, ) =0



Prob 4.21

Here is the geometry of the problem:

© T a)sina/i'
Z ‘ ®

A a
® y(eaSt) —WCOS X

X(south)
equator

Z

® y(east)

Earth o

X(south)

W=—wcosa X+wsina z



Prob 4.21 o A
Z
® y(east)
We will consider the Coriolis force only (no Earth o X(south)
centrifugal force), the equation of motion for a equator

particle moving with a velocity v in the

rotating frame is, A . A
O=—wCoSa X+wsSIna zZ

Feﬁ, =ma,
—2m(®xVv)—mgZ=ma, A A A
X y z
. A X = |— 1
= V=—2((o><v)—gz OXV wcosa 0 wsina
V. v, v,

WXV =—v osina X+(v,osina—v.wcosa)y+v,ocosa



—_—

Prob 4.21

In component form, the equation of motion is:

-

v, =20smav,

I\

v, = —Zco(cosa v, +sina vy)

v, =2wcosa v, —g

.

For @ small, we can try to solve this coupled differential equation

perturbatively...
v =0
, . (0) (particle in
oth — orderin ¢ (i.e., take @ =0), wehave < V'’ =0
‘ free fall)

v, =—g

\



Prob 4.21

N

For an initial condition v (O =V, Z, the oth order solution has the general

solution: )
0)

g N

0)

v(o) (t)

Now, plug in the ot" — order solution back into the ODE and the

g N

(
(

)=0
) and z” (t) =Z,+V,t —%gt2
v,

— gt

resulting ODE is 15t order in @, O ( a)) ,

f =2wsina v( ) =0
15t — order: Vx
v = Zco(cosa v +sina v(o)) =—2wmcosa (v,,— gt)
_ (0) = —
=2wcosa v, —g g




Prob 4.21

So, up to 15t order in @, the Coriolis effect only affects the motion in

the y direction.
p) =0
1) _ _ _
v = 2wcosa (v., —gt)
(1) _
vz — —&

.

The deflection in the y-direction (to the lowest order in @ ) is then

given by:

v, =—=2wcosa (v,,—gt)




Prob 4.21 v, ==2wcosa (v,,—gt)

For the initial condition: v (O) =V, Z

z

) v, (t) =—-2mcosa v+ gwcosa t? |:Vy (O) - O]

y(t)=—wcosa v, t’ +%ga)cosa £ || »(0)=0]

Now, we consider the two different cases:
Case 1: (Straightup v_ = v, > () from ground z (O) =0):

We still have the same free fall motion in the z-direction,

Vz(t)zvo—gt and Z(t):vot_%gt2 [Z(O):O]



—_—

Prob 4.21

Thus, the particle will slow down as it goes up and reaches the top of its

trajectory at time f =y, / g and at a height of

Since up-and-down is time symmetric, it will take ¢ = ZVO / g for the

particle to go up and come back down.



Prob 4.21

The accumulated y-deflection will be:

2V0 2Vo 2 1 2V0 :
y|— |=—wcosav,| — | +—-gowcosa| —
g g 3 g

3 3
= @WCOSU v—(’z(—4+§j — —ﬂa)cosa V02
g 3 T3 g

(“-” to the west)



Prob 4.21

Case 2: (Dropping from the same height reached as in Case 1):

The time it take for the particle to reach the ground from a height of h is,

1 2h v
:h _—— 2 :O = = 0
z(t)=h+ it zgt ) ! . o




Prob 4.21

The accumulated y-deflection will then be:

y(t)=—M+%ga)cosa £

Vv, = O since it is being dropped ]

v, | v, : 1 vS
V| — :gga)cosa — —+§a)cosa—2

g g g
/

(“+” to the east)

‘ y casel — _4y case?




—wcosa v t’+—gwcosa t’
3

L
e
e N
I e N
Av
ol

t (in v _0/g)

Prob 4.21

v, < 0
westward &
going west (-)

vy>O

westward &
going east (+)

A

back to ground
Note: There are two competing terms here. The negative term

v

g

dominates initially but the positive term makes y(t) + when ¢ >

As the particle goes up, it accumulated so much westward deflection, it
takes some time for it to make up and be eastward as it goes down.

Dropping from z=h will start deflecting eastward right away.



HW #11

Pay attention to the ordering of indices and also which one is free and which
one is being summed over

|(AxB)x(CxD)| =g, (AxB) (CxD),

=& (gjmnambn )( kpqcpdq )

= Eiik€ imn€ing a,b,c pdq [they are just # now]

=&, (61561 ) 001, | £ =3 ]

(55 ~5.6. )abcd

p~Jjq iq~ jp m-n-p ¢

(a bcd. —a bc d) [collapsing O, ]

ml’ll] mn]l

- \(gjmnambn)d ) ((ngnambn) J)d"
=[(AxB)-D]C-[(AxB)-C|D




